Recognition Stage for a Speed Supervisor Based on Road Sign Detection

نویسندگان

  • Juan Pablo Carrasco
  • Arturo de la Escalera
  • Jose M. Armingol
چکیده

Traffic accidents are still one of the main health problems in the World. A number of measures have been applied in order to reduce the number of injuries and fatalities in roads, i.e., implementation of Advanced Driver Assistance Systems (ADAS) based on image processing. In this paper, a real time speed supervisor based on road sign recognition that can work both in urban and non-urban environments is presented. The system is able to recognize 135 road signs, belonging to the danger, yield, prohibition obligation and indication types, and sends warning messages to the driver upon the combination of two pieces of information: the current speed of the car and the road sign symbol. The core of this paper is the comparison between the two main methods which have been traditionally used for detection and recognition of road signs: template matching (TM) and neural networks (NN). The advantages and disadvantages of the two approaches will be shown and commented. Additionally we will show how the use of well-known algorithms to avoid illumination issues reduces the amount of images needed to train a neural network.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Detection and Recognition of Multi-language Traffic Sign Context by Intelligent Driver Assistance Systems

Design of a new intelligent driver assistance system based on traffic sign detection with Persian context is concerned in this paper. The primary aim of this system is to increase the precision of drivers in choosing their path with regard to traffic signs. To achieve this goal, a new framework that implements fuzzy logic was used to detect traffic signs in videos captured along a highway f...

متن کامل

Design an Intelligent Driver Assistance System Based On Traffic Sign Detection with Persian Context

In recent years due to improvements of technology within automobile industry, design process of advanced driver assistance systems for collision avoidance and traffic management has been investigated in both academics and industrial levels. Detection of traffic signs is an effective method to reach the mentioned aims. In this paper a new intelligent driver assistance system based on traffic...

متن کامل

A Real Time Traffic Sign Detection and Recognition Algorithm based on Super Fuzzy Set

Advanced Driver Assistance Systems (ADAS) benefit from current infrastructure to discern environmental information. Traffic signs are global guidelines which inform drivers from near characteristics of paths ahead. Traffic Sign Recognition (TSR) system is an ADAS that recognize traffic signs in images captured from road and show information as an adviser or transmit them to other ADASs. In this...

متن کامل

Speed Supervisor for Intelligent Vehicles

ADAS are being developed with many goals: communications, road mark detection, road sign recognition or pedestrian detection. The work presented here is a system that communicates with a GPS, obtains speed data and uses this information in a Real Time Computer Vision System that detects and recognizes road signs, warning the driver in the case of excessive speed when the recognized road sign is...

متن کامل

Speed Sign Recognition using Shape-based Features

An efficient shape-based recognition system of U.S. speed limit road signs is presented in this paper. The proposed system accomplishes speed sign detection and recognition processes using three main stages, namely, geometrical-based detection of rectangular road signs, shape-based segmentation and feature extraction, and pattern classification using a K-nearest neighbor classifier (KNN). Twent...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 12  شماره 

صفحات  -

تاریخ انتشار 2012